#1
(由 Microsoft 翻译) 您可以采用两种基本策略:
1) 考虑一个组的可能位置,例如:
5 个红色方块的可能位置只能是以下之一:
在所有情况下,中间的三个方块都必须为红色,因此您可以确保这些方块为红色:
2) 当组一端已知时,组的剩余方块也可以知道,例如:
考虑绿色方块。由于它必须是绿色组最右边的正方形,因此该组中所有正方形的位置也可以知道:
1) 考虑一个组的可能位置,例如:
5 个红色方块的可能位置只能是以下之一:
在所有情况下,中间的三个方块都必须为红色,因此您可以确保这些方块为红色:
2) 当组一端已知时,组的剩余方块也可以知道,例如:
考虑绿色方块。由于它必须是绿色组最右边的正方形,因此该组中所有正方形的位置也可以知道:
(原文) Basic Strategies of Nonogram
You can adopt two basic strategies:
1) Consider the possible positions of a group, for example:
The possible positions of the group of 5 red squares can only be one of the following:
In all cases, the three squares in the middle must all be red, so you can be sure that those squares are red:
2) When one end of a group is known, the remaining squares of the group can also be known, for example:
Consider the green square. Since it must be the rightmost square of the green group, the position of all squares in that group can also be known:
You can adopt two basic strategies:
1) Consider the possible positions of a group, for example:
The possible positions of the group of 5 red squares can only be one of the following:
In all cases, the three squares in the middle must all be red, so you can be sure that those squares are red:
2) When one end of a group is known, the remaining squares of the group can also be known, for example:
Consider the green square. Since it must be the rightmost square of the green group, the position of all squares in that group can also be known:
作者 Novel Games
2007-01-26 11:21:00
赞
回复
#2
2665
回答 #1:
(由 Microsoft 翻译) 我用了两个基本策略,掌握了整场比赛!如何找出基本策略?
(原文) I used the two basic strategies and mastered the entire game! How do you figure out the basic strategies?
作者 Piotr Grochowski
2021-08-16 02:18:04
赞
回复