#1
(由 Microsoft 翻譯) 您可以採用兩種基本政策:
1) 考慮一個群組的可能位置,例如:
5 個紅色方塊的可能位置只能是以下之一:
在所有情況下,中間的三個方塊都必須為紅色,因此您可以確保這些方塊為紅色:
2) 當組一端已知時,組的剩餘方塊也可以知道,例如:
考慮綠色方塊。由於它必須是綠色組最右邊的正方形,因此該組中所有正方形的位置也可以知道:
1) 考慮一個群組的可能位置,例如:
5 個紅色方塊的可能位置只能是以下之一:
在所有情況下,中間的三個方塊都必須為紅色,因此您可以確保這些方塊為紅色:
2) 當組一端已知時,組的剩餘方塊也可以知道,例如:
考慮綠色方塊。由於它必須是綠色組最右邊的正方形,因此該組中所有正方形的位置也可以知道:
(原文) Basic Strategies of Nonogram
You can adopt two basic strategies:
1) Consider the possible positions of a group, for example:
The possible positions of the group of 5 red squares can only be one of the following:
In all cases, the three squares in the middle must all be red, so you can be sure that those squares are red:
2) When one end of a group is known, the remaining squares of the group can also be known, for example:
Consider the green square. Since it must be the rightmost square of the green group, the position of all squares in that group can also be known:
You can adopt two basic strategies:
1) Consider the possible positions of a group, for example:
The possible positions of the group of 5 red squares can only be one of the following:
In all cases, the three squares in the middle must all be red, so you can be sure that those squares are red:
2) When one end of a group is known, the remaining squares of the group can also be known, for example:
Consider the green square. Since it must be the rightmost square of the green group, the position of all squares in that group can also be known:
作者 Novel Games
2007-01-26 11:21:00
讚好
回覆
#2
2665
回答 #1:
(由 Microsoft 翻譯) 我用了兩個基本策略,掌握了整場比賽!如何找出基本策略?
(原文) I used the two basic strategies and mastered the entire game! How do you figure out the basic strategies?
作者 Piotr Grochowski
2021-08-16 02:18:04
讚好
回覆