المنتديات > خدع وتلميحات الألعاب
مجموعة بسيطة من الصيغ للمكعب السحري
Novel Games بواسطة
2008-01-10 15:50:51
#1
(تمت الترجمة بواسطة Microsoft) هناك العديد من الطرق لحل مكعب روبيك ، لكنها تنطوي على استخدام الصيغ لتحريك الكتل. تتطلب بعض الحلول استخدام أكثر من 50 صيغة يصعب تعلمها. وفيما يلي مجموعة من 3 الصيغ التي اخترعها الراحل السيد نجاي شينغ لي، وهذه المجموعة من الصيغ من السهل أن نتعلم ونتذكر. لاحظ أن هناك حاجة إلى الكثير من التحركات ولا يمكنك حل اللغز بسرعة كبيرة ، ولكن في النهاية ستتمكن من حله.
المفهوم الأساسي هو حل الزوايا أولا ثم الحواف. ويستند هذا على ملاحظة بسيطة أن تحريك الصفوف الوسطى وحدها لن يعطل الزوايا.
الإجراء الأساسي هو كما يلي:
الآن تبدأ مع الصيغة ألف ، الذي مبادلة مواقف من 3 كتل الزاوية :
(لسهولة العرض التوضيحي، تبدأ النتيجة الموضحة أعلاه بمكعب تم حله)
الفورمولا A يذهب على النحو التالي:
لاحظ أن الخطوات 3 الأولى تنطوي على إزالة الزاوية اليمنى السفلى من الوجه العلوي، والخطوات المتبقية لوضعها مرة أخرى. يمكنك أيضا تطبيق اختلاف من هذه الصيغة التي تزيل ويضع مرة أخرى الزاوية اليسرى السفلى من الوجه العلوي لتحقيق تأثير مماثل للكتل العلوية اليسرى والسفلية اليسرى والسفلية اليمنى على الوجه السفلي.
بعد الانتهاء من نقل كتل الزاوية من الوجه السفلي إلى مواقعها الصحيحة (ولكن ليس بالضرورة في الاتجاهات الصحيحة)، يمكنك تطبيق الصيغة B لتدوير الكتل عكس عقارب الساعة:
الفورمولا B يذهب على النحو التالي:
لاحظ أن الخطوات 3 الأولى تنطوي على إزالة الزاوية اليمنى السفلى من الوجه العلوي، والخطوات المتبقية لوضعها مرة أخرى. إذا قمت بتطبيق تباين من هذه الصيغة، سيتم تدوير الكتل العلوية اليسرى والسفلية اليسرى والسفلية اليمنى في الوجه السفلي في اتجاه عقارب الساعة.
بعد الانتهاء من جميع زوايا 8، يجب التعامل مع حواف باستخدام الصيغة C، الذي مبادلة مواقف 3 كتل على الحافة في اتجاه عكس عقارب الساعة:
الفورمولا C يذهب على النحو التالي:
لاحظ أن الخطوات 3 الأولى تتضمن إزالة كتلة الأوسط السفلي، والخطوات المتبقية لوضعها مرة أخرى. يمكنك أيضا تطبيق تباين من هذه الصيغة لمبادلة مواقف الكتل في اتجاه عقارب الساعة عن طريق تبديل دوران اليسار واليمين كما هو موضح أعلاه.
عند استخدام الصيغة C، في بعض الأحيان سوف تواجه حالة أن الكتل غير صحيحة ليست على نفس الوجه، وفي هذه الحالة سوف تحتاج إلى إجراء خطوات إضافية لنقل كتل غير صحيحة إلى نفس الوجه قبل تطبيق الصيغة C.
المفهوم الأساسي هو حل الزوايا أولا ثم الحواف. ويستند هذا على ملاحظة بسيطة أن تحريك الصفوف الوسطى وحدها لن يعطل الزوايا.
الإجراء الأساسي هو كما يلي:
- نقل الزوايا الأربع لوجه واحد إلى مواقعها الصحيحة والتوجهات الصحيحة (يجب أن لا تحتاج إلى أي صيغ لهذا)
- استخدم الصيغة A لنقل الزوايا الأربع المتبقية إلى مواقعها الصحيحة ولكن ليس بالضرورة في الاتجاهات الصحيحة
- استخدم الصيغة B لتدوير كتل الزاوية المتبقية إلى اتجاهاتها الصحيحة. الآن يجب أن تكون جميع الزوايا الثماني صحيحة
- استخدام الصيغة C لنقل الحواف إلى مواقعها الصحيحة
الآن تبدأ مع الصيغة ألف ، الذي مبادلة مواقف من 3 كتل الزاوية :
(لسهولة العرض التوضيحي، تبدأ النتيجة الموضحة أعلاه بمكعب تم حله)
الفورمولا A يذهب على النحو التالي:
لاحظ أن الخطوات 3 الأولى تنطوي على إزالة الزاوية اليمنى السفلى من الوجه العلوي، والخطوات المتبقية لوضعها مرة أخرى. يمكنك أيضا تطبيق اختلاف من هذه الصيغة التي تزيل ويضع مرة أخرى الزاوية اليسرى السفلى من الوجه العلوي لتحقيق تأثير مماثل للكتل العلوية اليسرى والسفلية اليسرى والسفلية اليمنى على الوجه السفلي.
بعد الانتهاء من نقل كتل الزاوية من الوجه السفلي إلى مواقعها الصحيحة (ولكن ليس بالضرورة في الاتجاهات الصحيحة)، يمكنك تطبيق الصيغة B لتدوير الكتل عكس عقارب الساعة:
الفورمولا B يذهب على النحو التالي:
لاحظ أن الخطوات 3 الأولى تنطوي على إزالة الزاوية اليمنى السفلى من الوجه العلوي، والخطوات المتبقية لوضعها مرة أخرى. إذا قمت بتطبيق تباين من هذه الصيغة، سيتم تدوير الكتل العلوية اليسرى والسفلية اليسرى والسفلية اليمنى في الوجه السفلي في اتجاه عقارب الساعة.
بعد الانتهاء من جميع زوايا 8، يجب التعامل مع حواف باستخدام الصيغة C، الذي مبادلة مواقف 3 كتل على الحافة في اتجاه عكس عقارب الساعة:
الفورمولا C يذهب على النحو التالي:
لاحظ أن الخطوات 3 الأولى تتضمن إزالة كتلة الأوسط السفلي، والخطوات المتبقية لوضعها مرة أخرى. يمكنك أيضا تطبيق تباين من هذه الصيغة لمبادلة مواقف الكتل في اتجاه عقارب الساعة عن طريق تبديل دوران اليسار واليمين كما هو موضح أعلاه.
عند استخدام الصيغة C، في بعض الأحيان سوف تواجه حالة أن الكتل غير صحيحة ليست على نفس الوجه، وفي هذه الحالة سوف تحتاج إلى إجراء خطوات إضافية لنقل كتل غير صحيحة إلى نفس الوجه قبل تطبيق الصيغة C.
(النص الأصلي) A Simple Set of Formulas for Magic Cube
There are many ways to solve Rubik's Cube, but they all involve the use of formulas to move the blocks. Some solutions require the use of more than 50 formulas which is rather difficult to learn. The following is a set of 3 formulas invented by late Mr. Ngai Shing Lee, and this set of formulas is easy to learn and remember. Note that a lot of moves is needed and you cannot solve the puzzle extremely quickly, but eventually you will be able to solve it.
The basic concept is to solve the corners first and then the edges. This is based on a simple observation that moving the middle rows alone will not disrupt the corners.
The basic procedure is as follows:
Now start with formula A, which swaps the positions of 3 corner blocks:
(For easy demonstration, the result shown above is starting with a solved cube)
Formula A goes as follows:
Note that the first 3 steps involve the removal of the lower right corner of the top face, and the remaining steps are to put it back. You can also apply a variation of this formula which removes and puts back the lower left corner of the top face to achieve a similar effect for the top left, bottom left and bottom right blocks on the bottom face.
After you have finished moving the corner blocks of the bottom face to their correct positions (but not necessarily in correct orientations), you can apply formula B to rotate the blocks counterclockwise:
Formula B goes as follows:
Note that the first 3 steps involve the removal of the lower right corner of the top face, and the remaining steps are to put it back. If you apply a variation of this formula, the top left, bottom left and bottom right blocks in the bottom face will be rotated clockwise.
After you have finished all the 8 corners, you should deal with the edges using formula C, which swaps the positions of 3 blocks on the edge in a counterclockwise direction:
Formula C goes as follows:
Note that the first 3 steps involve the removal of the lower middle block, and the remaining steps are to put it back. You can also apply a variation of this formula to swap the positions of the blocks in a clockwise direction by swapping the left and right rotations as shown above.
When using formula C, sometimes you will face a situation that the incorrect blocks are not on the same face, and in this case you will need to make extra moves to move the incorrect blocks to the same face before applying formula C.
There are many ways to solve Rubik's Cube, but they all involve the use of formulas to move the blocks. Some solutions require the use of more than 50 formulas which is rather difficult to learn. The following is a set of 3 formulas invented by late Mr. Ngai Shing Lee, and this set of formulas is easy to learn and remember. Note that a lot of moves is needed and you cannot solve the puzzle extremely quickly, but eventually you will be able to solve it.
The basic concept is to solve the corners first and then the edges. This is based on a simple observation that moving the middle rows alone will not disrupt the corners.
The basic procedure is as follows:
- Move the four corners of one face to their correct positions and correct orientations (you should not need any formulas for this)
- Use formula A to move the remaining four corners to their correct positions but not necessarily in correct orientations
- Use formula B to rotate the remaining corner blocks to their correct orientations. Now all eight corners should be correct
- Use formula C to move the edges to their correct positions
Now start with formula A, which swaps the positions of 3 corner blocks:
(For easy demonstration, the result shown above is starting with a solved cube)
Formula A goes as follows:
Note that the first 3 steps involve the removal of the lower right corner of the top face, and the remaining steps are to put it back. You can also apply a variation of this formula which removes and puts back the lower left corner of the top face to achieve a similar effect for the top left, bottom left and bottom right blocks on the bottom face.
After you have finished moving the corner blocks of the bottom face to their correct positions (but not necessarily in correct orientations), you can apply formula B to rotate the blocks counterclockwise:
Formula B goes as follows:
Note that the first 3 steps involve the removal of the lower right corner of the top face, and the remaining steps are to put it back. If you apply a variation of this formula, the top left, bottom left and bottom right blocks in the bottom face will be rotated clockwise.
After you have finished all the 8 corners, you should deal with the edges using formula C, which swaps the positions of 3 blocks on the edge in a counterclockwise direction:
Formula C goes as follows:
Note that the first 3 steps involve the removal of the lower middle block, and the remaining steps are to put it back. You can also apply a variation of this formula to swap the positions of the blocks in a clockwise direction by swapping the left and right rotations as shown above.
When using formula C, sometimes you will face a situation that the incorrect blocks are not on the same face, and in this case you will need to make extra moves to move the incorrect blocks to the same face before applying formula C.
Novel Games بواسطة
2008-01-10 15:50:51
أعجبني
الرد